您现在的位置是: 首页 > 使用指南 使用指南

电动汽车电池管理系统的设计开发_电动汽车电池管理

tamoadmin 2024-07-14 人已围观

简介1.电动汽车电池怎么保养2.深度:综合研判天美ET5电驱动技术和动力电池热管理策略电动汽车如何保养电池让使用寿命更长动力电池在使用过程中,由于工作材料的变化和内阻的增加,容量不可避免地会下降,容量的变化会直接影响车辆的续航里程,所以很多用户都在研究如何“保养电池”,但是动力电池没有维修的概念,连检测都不是一般维修人员能做到的!IP67是汽车动力电池组的行业标准,这意味着它可以防止灰尘进入外壳,同时

1.电动汽车电池怎么保养

2.深度:综合研判天美ET5电驱动技术和动力电池热管理策略

电动汽车电池管理系统的设计开发_电动汽车电池管理

电动汽车如何保养电池让使用寿命更长

动力电池在使用过程中,由于工作材料的变化和内阻的增加,容量不可避免地会下降,容量的变化会直接影响车辆的续航里程,所以很多用户都在研究如何“保养电池”,但是动力电池没有维修的概念,连检测都不是一般维修人员能做到的!IP67是汽车动力电池组的行业标准,这意味着它可以防止灰尘进入外壳,同时可以浸入1m(米)的水中30分钟而不进水,实际测试中,多个电池组放置几个小时都没有问题,可见电池组的密封性如何。

电池组的安装是一个非常精密的操作,标准的基本上都是自动化流程,那么动力电池可以保养吗?

怕是坏了也装不回去了,要知道主体产品的售后服务是不能把电池包总成分开的,锂电池不像铅酸电池,电池没电时会慢慢腐蚀极板,缩短电池寿命。

它充电很快,因为充电电流越大,产生的热量就越高,华为移动电源针对超过70摄氏度的高温设计了保护措施,因此锂电池充满电后会像手机一样产生高温,如果保护电路失灵,同样会引发事故,锂电池车辆一定要注意防止强烈撞击。

防止电池组短路起火!电池有一个循环计数,它是指电池在整个使用寿命期间完全和部分放电循环的总数,电池循环次数不代表充电次数,因为它指的是从空充到充满的循环,三元锂电池的理论循环次数是1200次,锂电池有一个很重要的特性。放电深度越低,使用寿命越长,因此,尽量保持深充浅放,比如将电池电量保持在30-80%之间,这样可以大大延长电池的使用寿命,而本田混动车型,动力电池之所以寿命长,浅充深放是主要原因。

过高或过低的温度无论是存放还是使用都会损坏电池,如果你住在冬天很冷的东北或西北,买干净的电动车最好有一个车库存放,而且试一试,冬天不开车,长期停在外面,夏季应注意蓄电池和电控系统的热损伤。电动车和汽油车一样有防冻液,电动汽车用于排除电气控制系统和电池的热量,因此进行定期检查,是必须的,有的用户喜欢边走边充电,有的用户喜欢用完再充电,实际上,这种方法是不正确的。

首先,铅酸蓄电池有一定的充放电次数,如果频繁充电,也会影响蓄电池的使用寿命,其次,铅酸电池如果使用后反复充电,会导致电池进一步放电,影响电池的使用寿命。

因此,正确的做法是将电池充电至30%左右,这样可以延长电池的使用寿命。

定期检查电池健康状况,定期检查汽车电池的健康状况可以及早发现电池故障和问题,如果电池坏了,建议及时更换或维修,一般来说,过放电会使电池内压升高,正负极活性物质接反而被破坏。

即使充电,也能部分恢复,容量也会大大降低,会大大影响锂电池的使用寿命,同时也会大大降低用车体验,在汽车电瓶的保养中,尽量在使用时充电,这样可以保持电瓶内部的活性。延长充电循环时间,也可以时常对电瓶进行保养,及时发现损坏的电瓶,如果电池长期不用,应在60~90天内充电一次,因为锂电池最好的存放条件是半电存放。

电动汽车电池怎么保养

纯电动汽车电池管理系统作为电池系统的重要组成部分,具有实时监控电池状态、优化使用电池能量、延长电池寿命和保证电池的使用安全等重要作用。电池管理系统对整车的安全运行、整车控制策略的选择、充电模式的选择以及运营成本都有很大影响。电池管理系统无论在车辆运行过程中还是在充电过程中都要可靠地完成电池状态的实时监控和故障诊断,并通过总线的方式告知车辆集成控制器或充电机,以便用更加合理的控制策略,达到有效且高效使用电池的目的。

电池管理系统用集散式系统结构,每套电池管理系统由1台中央控制模块(或称主机)和10个电池测控模块(或称从机)组成。电池管理系统检测模块安装在电池箱前面板内;电池管理系统主控模块安装在车辆尾部高压设备仓内,

电池管理系统的功能如下:

1.电体电池电压的检测

2.电池温度的检测

3.电池组工作电流的检测

4.绝缘电阻检测

5.冷却风机控制

6.充放电次数记录

7.电池组SoC的估测

8.电池故障分析与在线报警

9. 各箱电池充放电次数记录

10.各箱电池离散性评价

11.与车载设备通信,为整车控制提供必要的电池数据CAN1

12.与车载监控设备通信,将电池信息送面板显示CAN2

13.与充电机通信,安全实现电池的充电RS—485

14.有简易的设备实现纯电动汽车电池管理系统的初始化功能,能满足电池快速更换以及电池箱重新编组的需要。

深度:综合研判天美ET5电驱动技术和动力电池热管理策略

1、刚换的电池一定要记得充电,不管是新车还是旧车换的新电池。因为这些电池存放的时间你不知道是多久了,肯定会出现电量不足的情况。记得一定要把点充满。

2、电瓶车长时间不用的话也需要定期的对电动车进行充电,不要以为不用就没事,电池不定期充电会严重降低使用寿命严重甚至会报废。

3、骑电动车没电时一定不能再继续骑,虽然还能继续行驶一段距离,但对电池损害巨大。降低电池的使用寿命。

4、充电的时候我们常常会忘记充电时间,导致电充满后还再继续充电,这样过冲会导致电池失水,影响使用寿命。

5、最好不要在阳光下直晒,尤其是夏季高温天气。高温高热会降低电池的使用寿命。

6、电动车需要清洗的时候一定不能用水洗电池,不然会造成短路,损坏电池。

天美汽车是开沃新能源汽车集团旗下的全资子公司,其量产的首款车型天美ET5电动SUV,整车长宽高4698x1980x1696mm,轴距为2800mm;搭载1套最高转速15500转/分、最大输出功率150千瓦的“3合1”电驱动总成。最高配的天美ET5整车自重1.9吨、动力电池总成能量密度为170wh/kg、装载电量71.98度电、NEDC续航里程520公里;根据配置不同天美ET5共分为4个不同车型,但是全部车系搭载的动力电池系统全部标配独特的高温散热和低温预热功能。天美ET5电动SUV在智能驾驶方面可以实现ACC全速域自适应巡航、车道保持等L2级驾驶功能。

新能源情报分析网,就天美ET5独特的电池技术,源自母公司制造的开沃系电动客车标配的的以安全为研发牵引点,第3代全铝箱体一体化液冷电池技术的内在关联深度研判。

1、天美ET5基础配置介绍:

轴距2800mm的天美ET5电动SUV原本设计为7座车型,经过调研改为大5座车型,这就为后排乘员提供相当充沛的腿部与头部空间。接近2000mm的整车宽度,完全体现在前排正副驾驶员座椅舒适性与后排座椅的宽度,且后排乘坐3个成年男人不会感到拥挤。

另外,2800mm的轴距在带来的空间优势和乘坐舒适性同时,为车身焊接底部悬置的动力电池提供更宽泛的布设区域,换来的事更多的装载电量与更稳定的续航里程。

横向贯穿整个仪表台的饰板与空调出风口组件营造出阶梯型的空间错落感,横置的中央显示屏提供全车全部分系统的控制与显示功能(不包括外后视镜调节功能),下端的开关控制组件为驾驶员在行车中控制空调与音响(也可以在多功能方向盘进行设定)提供更多的便利性和安全性。

天美ET5具备L2级智能驾驶控制能力,可以由驾驶员激活/关闭车道偏离和车道保持等关键功能选项。尤为重要的是,天美ET5的能量回收级别,仍然可以由驾驶员在20%-100%区间任意调节设定。另外,涉及充放电的设定选项中,还具备电池深度放电与充电保温功能。

天美ET5电动SUV标配的电池深度放电功能,对日常习惯快充的车辆,让各个电芯全部放电至一个较低的SOC值后重新充值满电,有助于稳定动力电池内各个电芯健康水平。而电池慢充保护模式的设定,仍然是为了在慢充工况让全部电芯的SOC值保持均衡,有效稳定电池安全状态。

这台装载电量71.98度电的高配天美ET5电动SUV的驾驶员用显示屏,可以输出行车速度、续航里程、最大功率、动力电池SOC值以及百公里顺势电耗等关键数据。

2、天美ET5电驱动技术状态:

上图为天美ET5前置动力舱各分系统细节状态特写。

红色箭头:“3合1”充配电系统总成(集成OBC\DCDC\PDU)

蓝色箭头:最大输出功率为7千瓦的PTC控制模组

**箭头:伺服动力电池热管理系统低温预热功能的水冷板控制模组

绿色箭头:电驱动系统与动力电池热管理系统共用的冷却液补液壶

白色箭头:电液一体化的iBoost制动总泵

拆除前部动力舱防尘罩,可以看到天美ET5的电驱动系统、整车控制系统以及附属的动力电池热管理分系统。需要确定的是,作为天美品牌第一款电动车型,天美ET5动力舱诸多分系统布设有些凌乱。但是,连接各个分系统的冷却管路铺设结构十分清晰。除了3组必要的不同功率电子水泵,全车只有2组“3通”阀体。

**箭头:“3合1”充配电系统总成

红色箭头:整车控制系统

天美ET5电动SUV的整车控制系统以及集成了OBC\DCDC\PDU的“3合1”充配电系统,全部由开沃集团中央研究院自行开发和量产。作为天美上级单位,开沃集团制造的多款在售的电动公交车、电动旅游车以及电动卡车,都装配了由开沃集团中央研究院研发的“X合1”充配电系统总成以及整车控制系统。相对电动客车与电动卡车所需要的更大功率的管控需求,天美ET5电动SUV的“3合1”充配电系统技术表现区域稳妥。

在天美ET5的前至动力舱内,只设定1组以冷却液为载体、最大功率7千瓦的PTC控制模组,用于驾驶舱空调制热和动力电池低温预热功能需求。相对北京奔驰EQC、一汽奥迪eTron和上汽通用别克微蓝420等合资品牌电动汽车,用2组冷却液为载体、不同功率PTC控制模组的技术架构,天美ET5的控制方式更简单。

上图为天美ET5电动SUV前至动力舱防火墙设定的1组水冷板控制模组技术状态特写。在整套动力电池热管理控制系统中,水冷板控制模组、PTC控制模组、电子水泵以及动力电池,串联成1组管路并通过被加热或制冷的冷却液为电芯提供低温预热和高温散热伺服。其中水冷板控制模组与电动空调压缩机关联并进行“冷量”交换,将制冷后的冷却液泵入动力电池内部为电芯散热。

天美ET5的“3合1”电驱动系统与“3合1”充配电系统总成共用1组散热管路,动力电池热管理系统单独使用1组循环管路。但是,天美ET5电动SUV并未将两组循环管路单独设定补液壶,而是用“共享”方式。

红色箭头:动力电池热管理系统循环管路入水口

蓝色箭头:动力电池热管理系统循环管路出水口

绿色箭头:电驱动系统和充配电系统共用循环管路入水口

**箭头:电驱动系统和充配电系统共用循环管路出水口

对于天美ET5动力电磁热管理系统控制策略,将会在后文结合充电功率表现深度解析。

天美ET5电动SUV的制动系统用iBoost技术,即通过电液一体化设定,将制动、能量回收以及ABS安全设定一体整合。针对电动汽车研制的iBoost制动系统,在具备真空助力需求同时,更多的是将能量回收的效率提升与制动感受变得更线性。

3、天美ET5动力电池热管理控制策略:

对天美ET5电动SUV的动力电池热管理控制策略的解读,在快充模式和高负载行车模式对比进行。在室外温度达38摄氏度的午后,使用开沃制造的240千瓦(双120千瓦)快充桩,对天美ET5进行充电测试。

隶属与开沃集团的南京创源天地动力科技有限公司,其业务范围主要为开沃制造的电动客车、电动旅行车、电动物流车、电动卡车以及天美品牌ET5和后续车型提供动力电池总成(包括模组)、驱动电机、和包括整车在内的全部分系统的控制策略。

由于用于测试的这台天美ET5电动SUV的动力电池SOC值为90%,快充电流只有54.8安,电芯温度23摄氏度,处于“涓流”状态,而未能达到满功率状态。

通过热成像仪检测,天际ET5的动力电池SOC值处于90%进行快充,充电功率达不到满负荷状态、电芯温度只处于23摄氏度,不能满足激活动力电池热管理系统的高温散热功能激活阈值。

绿色箭头:驾驶舱空调制冷功能启动后电动空调压缩机至冷凝管路温度下探至13.6摄氏度

白色箭头:水冷板控制模组表面温度处于23.5摄氏度

与此同时,天美ET5的前置动力舱补液壶表面温度为41.6摄氏度,内部冷却液温度保持在42-44摄氏度。

进行快充测试过程中,天美ET5唯一1组补液壶只有来自电驱动系统(包括充放电系统)管路内的冷却液进行循环(红色箭头),而来自动力电池热管理系统循环管路内的冷却液并未流入。

尽管动力电池充电电流并未持续上升,但是电芯温度从23摄氏度攀升至35摄氏度,此时天美ET5动力电池热管理系统的高温散热功能激活,水冷板控制模组引入来自电动空调压缩机输出的“冷量”被引入,经过冷却的冷却液由“泵入”动力电池总成内为电芯进行降温。

绿色箭头:驾驶舱空调制冷功能启动后电动空调压缩机至冷凝管路温度下探至8.6摄氏度

白色箭头:水冷板控制模组表面温度处于7摄氏度

需要注意的是,2020年在售的国产品牌主流电动汽车,用以冷却液为载体的单一PTC控制模组用于电池低温预热,驾驶舱空调制暖用电加热PTC控制模组的方式,制暖/预热效率更高(对于是否节能要在完成评测后给出结论)。

天美ET5的以冷却液为载体的单一PTC控制模组的技术,通过1组“3通”阀体控制被加热的冷却液,或流向驾驶舱空调系统用于制暖、或流向动力电池内部用于电芯低温预热。

红色箭头:从PTC控制模组向“3通”阀体的管路

蓝色箭头:“3通”阀体

**箭头:“3通”阀体至驾驶舱空调管路

白色箭头:“3通”阀体至动力电池管路

在低温充电工况,天美ET5利用来自充电桩端的电量激活PTC控制模组,为冷却液加热达到为动力电池低温预热。如果此时开启驾驶舱空调暖风,“3通”阀体会会将加热后的冷却液输送至驾驶舱空调和动力电池。由于动力电池低温预热所需要的的冷却液最高温度将不会超过20摄氏度(通常设定为15摄氏度),驾驶舱空调暖风所需要的冷却液温度可以达到70摄氏度或更高温度。

因此不具备温度调节功能的“3通”阀体,就将通往动力电池循环管路的冷却液流量控制更精准,已获达到通过减少流量,满足温度的技术需求。

对于天美ET5电动SUV用的1组冷却液补液壶的设定,代表着电驱动系统循环管路和动力电池热管理循环管路,既要满足不同温度值的冷却液流动,又不能增加管路数量提升系统可靠性,这凸显的天美以及背后开沃品牌在过去多年新能源商用车应用与核心技术研发的综合硬实力。

3、天美ET5的动力电池安全性:

天美ET5电动SUV搭载的“3合1”充配电系统总成,以及其他悬挂开沃品牌的车型所搭载的“X合1”充放电系统总成、电驱动控制总成以及动力电池(包括BMS系统),全部由位于南京的开沃集团中央研究院开发并量产(部分动力电池系统由开沃集团旗下的创源天地动力科技有限公司制造)。

开沃汽车中央研究院,主要对不同种类的电芯,动力电池总成、多种策略的热管理系统、燃料电池系统和电驱动及混动多档位变速器等分系统进行预研、研发和量产前需要的所有技术支持。目前南京创源电池所有动力电池产品从开发设计,到产品试验认证,再到产品定型量产设计均由南京创源研发团队与中央研究院进行产品的全面评审和验证,保障产品的优秀品质。作为电动客车最重要的动力电池发展方向,开沃汽车中央研究院,与南京创源电池技术团队一起,始终对不同种类电芯及动力电池解决方案,进行行业层面的最前沿预测和研发,为客户提供优质的动力电池系统解决方案。

上图为开沃汽车设立于中央研究院公共技术服务平台的动力电池快速温变环境仓和电芯测试系统。

蓝色箭头:正在对软包三元锂电芯进行常温充放电循环测试

**箭头:正在对18650型三元锂电芯进行常温充放电循环测试

红色箭头:正在对方形三元锂电芯模拟高温环境进行充放电循环测试(动力电池快速温变环境仓)

开沃汽车中央研究院主要对不同种类的电芯,动力电池总成、多种策略的热管理系统、燃料电池系统和电驱动及混动多档位变速器等分系统进行预研、研发和量产前需要的所有技术支持。

圆柱形18650型三元锂电池多分为镍钴铝和镍钴锰2大类,前者用于特斯拉Model?SModel?X和Model?3,后者则被用于国产低端等非主流电动汽车。众所周知,搭载18650型、21700型圆柱三元锂电池系统的特斯拉全系车型,在全球范围已经发生近60宗涉及起火、燃烧和爆炸事故。

进行穿刺测试后的圆柱形18650型三元锂电芯,虽然没有爆炸但是烧灼的痕迹十分明显。对于圆柱形18650型或21700型类三元锂电芯,进行台架模拟全寿命周期充放电衰减测试,有助于厂家指定严禁且完整的动力电池热管理控制策略。但是先天存在的安全性不足的问题,是不能通过后期“软件”控制来弥补的。

对于软包类三元锂电芯的选择,开沃早于2014年就进行了安全与控制方面的测试。方形三元锂电芯的能量密度低于软包三元锂电芯的客观存在前,通过更完善的温度管理措施,可以有效的提升动力电池总成的能量密度,或增加续航里程、或降低自重。

红色箭头:方形三元锂电芯

**箭头:软包三元锂电芯

至2020年,开沃集团研究院为旗下电动客车和电动卡车,开发出3代车载动力电池解决方案。第1代电池系统(上图所示)基于风冷散热+电加热控制策略。主要用于夏季温度不高的中国北方城市和村镇。

第2代动力电池解决方案,是基于方形三元锂电芯(模组)+内置循环管路(冷却液)和温控系统的钢/铝制电池箱体。由于第2代动力电池系统的研发与第3代电池技术的发展有些重叠,并结合天际ET5电动SUV的立项,将第2代电池技术转向乘用车,全新的第3代电池技术则用于商用车。

红色箭头:设定在第2代动力电池箱体前端的冷却液进出口

**箭头:第3代全铝箱体一体化液冷电池内部的液冷板

上图为广泛用于开沃系电动客车的第3代全铝箱体一体化液冷电池特写。这种将液冷板直接融入铝合金电池箱体(底部)的技术,直接避免发生冷却液管路破裂造成短路的安全事故,且简化结构降低自重。对于安全性要求更高的电动客车(公交车)而言,模块化、轻量化且热管理保护严密的动力电池系统,并没有成为2020年中国电动客车的行业强制规范。

笔者有话说:

天美ET5电动SUV搭载的适用于乘用车动力电池技术,与开沃系电动客车用的第2代液冷电池技术,3代全铝箱体一体化液冷电池技术,存在太多技术交叉点,并在终端市场进行了超过2年时间的实际应用。

与蔚来、理想、威马等造车新势力不同的是,天美ET5的首款车型,引入的电驱动技术、动力电池及控制策略并不是全新的状态,而是在不同车型进行长期终端市场可靠性的验证。

当然,成熟的分系统是否集成在全新的车型平台等于较好的可靠性,这还要以后续的市场表现为准。

新能源情报分析网评测组出品

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

文章标签: # 电池 # 动力电池 # 天美